TableOfContents

Target Outcome

Material behavior for all primary and secondary tissues necessary for required representative constitutive models.

Prerequisites

Infrastructure

For more details see ["Infrastructure/ExperimentationMechanics"].

Previous Protocols

For more details see ["Specifications/Specimens"].

For more details see ["Specifications/SpecimenPreparation"].

For more details see ["Specifications/ExperimentationAnatomicalImaging"]

For more details see ["Specifications/ExperimentationJointMechanics"]

Tissue types

Primary tissues

Cartilage

1. Medial femoral condyle

2. Lateral femoral condyle

3. Medial tibial plateau

4. Lateral tibial plateau

5. Patellar groove / femoral groove

6. Patella

Meniscus

1. Medial meniscus

2. Lateral meniscus

Ligaments

1. Anterior collateral ligament

2. Posterior collateral ligament

3. Lateral collateral ligament

4. Medial collateral ligament

5. Patellar ligament

Tendon

1. Quadriceps tendon

Secondary tissues

  1. Capsule

Protocols

Ligaments

Conditions

Measurements

Operating Procedure

Cartilage

Conditions

Measurements

Operating Procedure

Note: A typical test day for all three tests from one cartilage location would include testing sample in unconfined compression, then testing a tensile sample followed by retesting the compression sample under confined compression.

Menisci

Conditions

Measurements

Operating Procedure

Tendons

Conditions

Measurements

Operating Procedure

Capsule

Conditions

Measurements

Operating Procedure

References

1. Seitz, Andreas Martin, Fabio Galbusera, Carina Krais, Anita Ignatius, and Lutz Dürselen. “Stress-relaxation Response of Human Menisci Under Confined Compression Conditions.” Journal of the Mechanical Behavior of Biomedical Materials 26 (October 2013): 68–80. doi:10.1016/j.jmbbm.2013.05.027. http://www.sciencedirect.com/science/article/pii/S175161611300204X

2. Korhonen RK1, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS. "Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation." Journal of Biomechanics 2002 Jul;35(7):903-9. http://www.ncbi.nlm.nih.gov/pubmed/12052392


Note The information from this point onward will be moved to Discussion page.

Data acquisition by Elvis Danso

Note:

Pilot tissue mechanical tests

attachment:sample-list.xls

Sample 1

Sample: Cylindrical compression sample

Tissue: Cartilage

Location: Lateral tibial plateau

Dimensions (measured using LVDT): Thickness = 2.47 mm, Diameter= 5 mm.

Test: Unconfined compression

Data:

attachment:data.txt

Note: Pre-stress value is determined from 1. finding load when the load cell starts accumulating load (as close to zero as possible and as allowed by the load cell resolution) 2.and the area of cross section. For this sample the diameter was measured using a ruler (thickness measurement system is currently not calibrated for >3 mm, need gauges). This prestress value will be used for all the test samples for cartilage compression tests.

Sample 2

Sample: Dumbbell tensile sample

Tissue: Cartilage

Location: Lateral Femoral Condyle

Dimensions (measured using LVDT): Thickness = mm, Length= mm, width = mm

Test: Uniaxial tensile test

Data:

Sample 3

Sample: Dumbbell tensile sample

Tissue: MCL

Location: Mid-substance

Dimensions (measured using LVDT): Thickness = mm, Length= mm, width = mm

Test: Uniaxial tensile test

Data: