OpenMM
 All Classes Namespaces Functions Variables Pages
VariableVerletIntegrator Class Reference

This is an error contolled, variable time step Integrator that simulates a System using the leap-frog Verlet algorithm. More...

+ Inheritance diagram for VariableVerletIntegrator:

Public Member Functions

def getErrorTolerance
 getErrorTolerance(VariableVerletIntegrator self) -> double
 
def setErrorTolerance
 setErrorTolerance(VariableVerletIntegrator self, double tol)
 
def step
 step(VariableVerletIntegrator self, int steps)
 
def stepTo
 stepTo(VariableVerletIntegrator self, double time)
 
def __init__
 init(OpenMM::VariableVerletIntegrator self, double errorTol) -> VariableVerletIntegrator init(OpenMM::VariableVerletIntegrator self, VariableVerletIntegrator other) -> VariableVerletIntegrator
 
def __del__
 del(OpenMM::VariableVerletIntegrator self)
 
- Public Member Functions inherited from Integrator
def __init__
 
def __del__
 del(OpenMM::Integrator self)
 
def getStepSize
 getStepSize(Integrator self) -> double
 
def setStepSize
 setStepSize(Integrator self, double size)
 
def getConstraintTolerance
 getConstraintTolerance(Integrator self) -> double
 
def setConstraintTolerance
 setConstraintTolerance(Integrator self, double tol)
 
def step
 step(Integrator self, int steps)
 

Public Attributes

 this
 

Detailed Description

This is an error contolled, variable time step Integrator that simulates a System using the leap-frog Verlet algorithm.

It compares the result of the Verlet integrator to that of an explicit Euler integrator, takes the difference between the two as a measure of the integration error in each time step, and continuously adjusts the step size to keep the error below a specified tolerance. This both improves the stability of the integrator and allows it to take larger steps on average, while still maintaining comparable accuracy to a fixed step size integrator.

It is best not to think of the error tolerance as having any absolute meaning. It is just an adjustable parameter that affects the step size and integration accuracy. You should try different values to find the largest one that produces a trajectory sufficiently accurate for your purposes. 0.001 is often a good starting point.

Unlike a fixed step size Verlet integrator, variable step size Verlet is not symplectic. This means that at a given accuracy level, energy is not as precisely conserved over long time periods. This makes it most appropriate for constant temperate simulations. In constant energy simulations where precise energy conservation over long time periods is important, a fixed step size Verlet integrator may be more appropriate.

Constructor & Destructor Documentation

def __init__ (   self,
  args 
)

init(OpenMM::VariableVerletIntegrator self, double errorTol) -> VariableVerletIntegrator init(OpenMM::VariableVerletIntegrator self, VariableVerletIntegrator other) -> VariableVerletIntegrator

Create a VariableVerletIntegrator.

Parameters
errorTolthe error tolerance
def __del__ (   self)

del(OpenMM::VariableVerletIntegrator self)

Member Function Documentation

def getErrorTolerance (   self)

getErrorTolerance(VariableVerletIntegrator self) -> double

Get the error tolerance.

def setErrorTolerance (   self,
  args 
)

setErrorTolerance(VariableVerletIntegrator self, double tol)

Set the error tolerance.

def step (   self,
  args 
)

step(VariableVerletIntegrator self, int steps)

Advance a simulation through time by taking a series of time steps.

Parameters
stepsthe number of time steps to take
def stepTo (   self,
  args 
)

stepTo(VariableVerletIntegrator self, double time)

Advance a simulation through time by taking a series of steps until a specified time is reached. When this method returns, the simulation time will exactly equal the time which was specified. If you call this method and specify a time that is earlier than the current time, it will return without doing anything.

Parameters
timethe time to which the simulation should be advanced

Member Data Documentation

this

The documentation for this class was generated from the following file: