OpenMM
 All Classes Namespaces Functions Variables Pages
MonteCarloBarostat Class Reference

This class uses a Monte Carlo algorithm to adjust the size of the periodic box, simulating the effect of constant pressure. More...

+ Inheritance diagram for MonteCarloBarostat:

Public Member Functions

def Pressure
 Pressure() -> std::string const &.
 
def getDefaultPressure
 getDefaultPressure(MonteCarloBarostat self) -> double
 
def getFrequency
 getFrequency(MonteCarloBarostat self) -> int
 
def setFrequency
 setFrequency(MonteCarloBarostat self, int freq)
 
def getTemperature
 getTemperature(MonteCarloBarostat self) -> double
 
def setTemperature
 setTemperature(MonteCarloBarostat self, double temp)
 
def getRandomNumberSeed
 getRandomNumberSeed(MonteCarloBarostat self) -> int
 
def setRandomNumberSeed
 setRandomNumberSeed(MonteCarloBarostat self, int seed)
 
def __init__
 init(OpenMM::MonteCarloBarostat self, double defaultPressure, double temperature, int frequency=25) -> MonteCarloBarostat init(OpenMM::MonteCarloBarostat self, double defaultPressure, double temperature) -> MonteCarloBarostat init(OpenMM::MonteCarloBarostat self, MonteCarloBarostat other) -> MonteCarloBarostat
 
def __del__
 del(OpenMM::MonteCarloBarostat self)
 
- Public Member Functions inherited from Force
def __init__
 
def __del__
 del(OpenMM::Force self)
 
def getForceGroup
 getForceGroup(Force self) -> int
 
def setForceGroup
 setForceGroup(Force self, int group)
 
def __copy__
 
def __deepcopy__
 

Public Attributes

 this
 

Detailed Description

This class uses a Monte Carlo algorithm to adjust the size of the periodic box, simulating the effect of constant pressure.

This class assumes the simulation is also being run at constant temperature, and requires you to specify the system temperature (since it affects the acceptance probability for Monte Carlo moves). It does not actually perform temperature regulation, however. You must use another mechanism along with it to maintain the temperature, such as LangevinIntegrator or AndersenThermostat.

Constructor & Destructor Documentation

def __init__ (   self,
  args 
)

init(OpenMM::MonteCarloBarostat self, double defaultPressure, double temperature, int frequency=25) -> MonteCarloBarostat init(OpenMM::MonteCarloBarostat self, double defaultPressure, double temperature) -> MonteCarloBarostat init(OpenMM::MonteCarloBarostat self, MonteCarloBarostat other) -> MonteCarloBarostat

Create a MonteCarloBarostat.

Parameters
defaultPressurethe default pressure acting on the system (in bar)
temperaturethe temperature at which the system is being maintained (in Kelvin)
frequencythe frequency at which Monte Carlo pressure changes should be attempted (in time steps)
def __del__ (   self)

del(OpenMM::MonteCarloBarostat self)

Member Function Documentation

def getDefaultPressure (   self)

getDefaultPressure(MonteCarloBarostat self) -> double

Get the default pressure acting on the system (in bar).

def getFrequency (   self)

getFrequency(MonteCarloBarostat self) -> int

Get the frequency (in time steps) at which Monte Carlo pressure changes should be attempted. If this is set to 0, the barostat is disabled.

def getRandomNumberSeed (   self)

getRandomNumberSeed(MonteCarloBarostat self) -> int

Get the random number seed. See setRandomNumberSeed() for details.

def getTemperature (   self)

getTemperature(MonteCarloBarostat self) -> double

Get the temperature at which the system is being maintained, measured in Kelvin.

def Pressure ( )

Pressure() -> std::string const &.

This is the name of the parameter which stores the current pressure acting on the system (in bar).

def setFrequency (   self,
  args 
)

setFrequency(MonteCarloBarostat self, int freq)

Set the frequency (in time steps) at which Monte Carlo pressure changes should be attempted. If this is set to 0, the barostat is disabled.

def setRandomNumberSeed (   self,
  args 
)

setRandomNumberSeed(MonteCarloBarostat self, int seed)

Set the random number seed. It is guaranteed that if two simulations are run with different random number seeds, the sequence of Monte Carlo steps will be different. On the other hand, no guarantees are made about the behavior of simulations that use the same seed. In particular, Platforms are permitted to use non-deterministic algorithms which produce different results on successive runs, even if those runs were initialized identically.

def setTemperature (   self,
  args 
)

setTemperature(MonteCarloBarostat self, double temp)

Set the temperature at which the system is being maintained.

Parameters
tempthe system temperature, measured in Kelvin.

Member Data Documentation

this

The documentation for this class was generated from the following file: