Provide user-friendly codes and algorithms written using GROMACS/CHARMM APIs for statistical analysis of conformational ensembles
This project provides computational tools and methods to analyze conformational ensembles of biomolecules, as well as their assemblies, such as those obtained from molecular simulations.
(A) PROTEINS: The molecular understanding of the functional regulation of proteins requires assessment of various states, including active and inactive states, as well as their interdependencies. For several proteins, their various states can be distinguished from each other on the basis of their minimum energy 3D structures. For many other proteins, like GPCRs, PDZ domains, nuclear transcription factors, heat shock proteins, T-cell receptors and viral attachment proteins, their states can be distinguished categorically from each other only when their finite-temperature conformational ensembles are considered alongside their minimum-energy structures. We are developing tools/methods for:
(A1) Direct comparison of conformational ensembles - The traditional approach to compare two or more conformational ensembles is to compare their respective summary statistics. This approach is, however, prone to artifactual bias, as data is compared after dimensionality reduction. The proper way to compare ensembles is to compare them directly with each other and prior to any dimensionality reduction. g_ensemble_comp is a tool we have developed that does just that and reports the difference between ensembles in terms of a true metric defined by the zeroth law of thermodynamics.
(A2) Prediction of allosteric signaling networks - method under development.
(B) LIPID MEMBRANES: The surface area of a lipid bilayer is related fundamentally to many other observables, such as thermal phase transitions and domain formation in mixed lipid bilayers. We have developed g_tessellate_area to compute the 3D surface area of a bilayer using Delunay tessellation.