NLP Class Reference

#include <IpNLP.hpp>

Inheritance diagram for NLP:

ReferencedObject TNLPAdapter

List of all members.


Detailed Description

Brief Class Description.

Detailed Class Description.

Public Member Functions

virtual void GetQuasiNewtonApproximationSpaces (SmartPtr< VectorSpace > &approx_space, SmartPtr< Matrix > &P_approx)
 Method for obtaining the subspace in which the limited-memory Hessian approximation should be done.
Constructors/Destructors
 NLP ()
 Default constructor.
virtual ~NLP ()
 Default destructor.
 DECLARE_STD_EXCEPTION (USER_SCALING_NOT_IMPLEMENTED)
 Exceptions.
NLP Initialization (overload in
derived classes).

virtual bool ProcessOptions (const OptionsList &options, const std::string &prefix)
 Overload if you want the chance to process options or parameters that may be specific to the NLP.
virtual bool GetSpaces (SmartPtr< const VectorSpace > &x_space, SmartPtr< const VectorSpace > &c_space, SmartPtr< const VectorSpace > &d_space, SmartPtr< const VectorSpace > &x_l_space, SmartPtr< const MatrixSpace > &px_l_space, SmartPtr< const VectorSpace > &x_u_space, SmartPtr< const MatrixSpace > &px_u_space, SmartPtr< const VectorSpace > &d_l_space, SmartPtr< const MatrixSpace > &pd_l_space, SmartPtr< const VectorSpace > &d_u_space, SmartPtr< const MatrixSpace > &pd_u_space, SmartPtr< const MatrixSpace > &Jac_c_space, SmartPtr< const MatrixSpace > &Jac_d_space, SmartPtr< const SymMatrixSpace > &Hess_lagrangian_space)=0
 Method for creating the derived vector / matrix types.
virtual bool GetBoundsInformation (const Matrix &Px_L, Vector &x_L, const Matrix &Px_U, Vector &x_U, const Matrix &Pd_L, Vector &d_L, const Matrix &Pd_U, Vector &d_U)=0
 Method for obtaining the bounds information.
virtual bool GetStartingPoint (SmartPtr< Vector > x, bool need_x, SmartPtr< Vector > y_c, bool need_y_c, SmartPtr< Vector > y_d, bool need_y_d, SmartPtr< Vector > z_L, bool need_z_L, SmartPtr< Vector > z_U, bool need_z_U)=0
 Method for obtaining the starting point for all the iterates.
virtual bool GetWarmStartIterate (IteratesVector &warm_start_iterate)
 Method for obtaining an entire iterate as a warmstart point.
NLP evaluation routines (overload
in derived classes.

virtual bool Eval_f (const Vector &x, Number &f)=0
virtual bool Eval_grad_f (const Vector &x, Vector &g_f)=0
virtual bool Eval_c (const Vector &x, Vector &c)=0
virtual bool Eval_jac_c (const Vector &x, Matrix &jac_c)=0
virtual bool Eval_d (const Vector &x, Vector &d)=0
virtual bool Eval_jac_d (const Vector &x, Matrix &jac_d)=0
virtual bool Eval_h (const Vector &x, Number obj_factor, const Vector &yc, const Vector &yd, SymMatrix &h)=0
NLP solution routines. Have default dummy
implementations that can be overloaded.

virtual void FinalizeSolution (SolverReturn status, const Vector &x, const Vector &z_L, const Vector &z_U, const Vector &c, const Vector &d, const Vector &y_c, const Vector &y_d, Number obj_value)
 This method is called at the very end of the optimization.
virtual bool IntermediateCallBack (AlgorithmMode mode, Index iter, Number obj_value, Number inf_pr, Number inf_du, Number mu, Number d_norm, Number regularization_size, Number alpha_du, Number alpha_pr, Index ls_trials, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
 This method is called once per iteration, after the iteration summary output has been printed.
virtual void GetScalingParameters (const SmartPtr< const VectorSpace > x_space, const SmartPtr< const VectorSpace > c_space, const SmartPtr< const VectorSpace > d_space, Number &obj_scaling, SmartPtr< Vector > &x_scaling, SmartPtr< Vector > &c_scaling, SmartPtr< Vector > &d_scaling) const
 Routines to get the scaling parameters.


Constructor & Destructor Documentation

NLP (  )  [inline]

Default constructor.

virtual ~NLP (  )  [inline, virtual]

Default destructor.


Member Function Documentation

DECLARE_STD_EXCEPTION ( USER_SCALING_NOT_IMPLEMENTED   ) 

Exceptions.

virtual bool ProcessOptions ( const OptionsList options,
const std::string &  prefix 
) [inline, virtual]

Overload if you want the chance to process options or parameters that may be specific to the NLP.

Reimplemented in TNLPAdapter.

virtual bool GetSpaces ( SmartPtr< const VectorSpace > &  x_space,
SmartPtr< const VectorSpace > &  c_space,
SmartPtr< const VectorSpace > &  d_space,
SmartPtr< const VectorSpace > &  x_l_space,
SmartPtr< const MatrixSpace > &  px_l_space,
SmartPtr< const VectorSpace > &  x_u_space,
SmartPtr< const MatrixSpace > &  px_u_space,
SmartPtr< const VectorSpace > &  d_l_space,
SmartPtr< const MatrixSpace > &  pd_l_space,
SmartPtr< const VectorSpace > &  d_u_space,
SmartPtr< const MatrixSpace > &  pd_u_space,
SmartPtr< const MatrixSpace > &  Jac_c_space,
SmartPtr< const MatrixSpace > &  Jac_d_space,
SmartPtr< const SymMatrixSpace > &  Hess_lagrangian_space 
) [pure virtual]

Method for creating the derived vector / matrix types.

The Hess_lagrangian_space pointer can be NULL if a quasi-Newton options is chosen.

Implemented in TNLPAdapter.

virtual bool GetBoundsInformation ( const Matrix Px_L,
Vector x_L,
const Matrix Px_U,
Vector x_U,
const Matrix Pd_L,
Vector d_L,
const Matrix Pd_U,
Vector d_U 
) [pure virtual]

Method for obtaining the bounds information.

Implemented in TNLPAdapter.

virtual bool GetStartingPoint ( SmartPtr< Vector x,
bool  need_x,
SmartPtr< Vector y_c,
bool  need_y_c,
SmartPtr< Vector y_d,
bool  need_y_d,
SmartPtr< Vector z_L,
bool  need_z_L,
SmartPtr< Vector z_U,
bool  need_z_U 
) [pure virtual]

Method for obtaining the starting point for all the iterates.

ToDo it might not make sense to ask for initial values for v_L and v_U?

Implemented in TNLPAdapter.

virtual bool GetWarmStartIterate ( IteratesVector warm_start_iterate  )  [inline, virtual]

Method for obtaining an entire iterate as a warmstart point.

The incoming IteratesVector has to be filled. The default dummy implementation returns false.

Reimplemented in TNLPAdapter.

virtual bool Eval_f ( const Vector x,
Number f 
) [pure virtual]

Implemented in TNLPAdapter.

virtual bool Eval_grad_f ( const Vector x,
Vector g_f 
) [pure virtual]

Implemented in TNLPAdapter.

virtual bool Eval_c ( const Vector x,
Vector c 
) [pure virtual]

Implemented in TNLPAdapter.

virtual bool Eval_jac_c ( const Vector x,
Matrix jac_c 
) [pure virtual]

Implemented in TNLPAdapter.

virtual bool Eval_d ( const Vector x,
Vector d 
) [pure virtual]

Implemented in TNLPAdapter.

virtual bool Eval_jac_d ( const Vector x,
Matrix jac_d 
) [pure virtual]

Implemented in TNLPAdapter.

virtual bool Eval_h ( const Vector x,
Number  obj_factor,
const Vector yc,
const Vector yd,
SymMatrix h 
) [pure virtual]

Implemented in TNLPAdapter.

virtual void FinalizeSolution ( SolverReturn  status,
const Vector x,
const Vector z_L,
const Vector z_U,
const Vector c,
const Vector d,
const Vector y_c,
const Vector y_d,
Number  obj_value 
) [inline, virtual]

This method is called at the very end of the optimization.

It provides the final iterate to the user, so that it can be stored as the solution. The status flag indicates the outcome of the optimization, where SolverReturn is defined in IpAlgTypes.hpp.

Reimplemented in TNLPAdapter.

virtual bool IntermediateCallBack ( AlgorithmMode  mode,
Index  iter,
Number  obj_value,
Number  inf_pr,
Number  inf_du,
Number  mu,
Number  d_norm,
Number  regularization_size,
Number  alpha_du,
Number  alpha_pr,
Index  ls_trials,
const IpoptData ip_data,
IpoptCalculatedQuantities ip_cq 
) [inline, virtual]

This method is called once per iteration, after the iteration summary output has been printed.

It provides the current information to the user to do with it anything she wants. It also allows the user to ask for a premature termination of the optimization by returning false, in which case Ipopt will terminate with a corresponding return status. The basic information provided in the argument list has the quantities values printed in the iteration summary line. If more information is required, a user can obtain it from the IpData and IpCalculatedQuantities objects. However, note that the provided quantities are all for the problem that Ipopt sees, i.e., the quantities might be scaled, fixed variables might be sorted out, etc. The status indicates things like whether the algorithm is in the restoration phase... In the restoration phase, the dual variables are probably not not changing.

Reimplemented in TNLPAdapter.

virtual void GetScalingParameters ( const SmartPtr< const VectorSpace x_space,
const SmartPtr< const VectorSpace c_space,
const SmartPtr< const VectorSpace d_space,
Number obj_scaling,
SmartPtr< Vector > &  x_scaling,
SmartPtr< Vector > &  c_scaling,
SmartPtr< Vector > &  d_scaling 
) const [inline, virtual]

Routines to get the scaling parameters.

These do not need to be overloaded unless the options are set for User scaling

Reimplemented in TNLPAdapter.

References THROW_EXCEPTION.

virtual void GetQuasiNewtonApproximationSpaces ( SmartPtr< VectorSpace > &  approx_space,
SmartPtr< Matrix > &  P_approx 
) [inline, virtual]

Method for obtaining the subspace in which the limited-memory Hessian approximation should be done.

This is only called if the limited-memory Hessian approximation is chosen. Since the Hessian is zero in the space of all variables that appear in the problem functions only linearly, this allows the user to provide a VectorSpace for all nonlinear variables, and an ExpansionMatrix to lift from this VectorSpace to the VectorSpace of the primal variables x. If the returned values are NULL, it is assumed that the Hessian is to be approximated in the space of all x variables. The default instantiation of this method returns NULL, and a user only has to overwrite this method if the approximation is to be done only in a subspace.

Reimplemented in TNLPAdapter.


The documentation for this class was generated from the following file:

Generated on Fri Sep 26 07:44:26 2008 for SimTKcore by  doxygen 1.5.6