AboutDownloads
Distribution of normal human left ventricular myofiber stress at end-diastole and end-systole-a target for in silico design of heart failure treatments (2014)
Abstract    View

Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 + 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4% ± 6.3% and 0.5% ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 kPa and 16.54 ± 4.73 kPa, respectively. Thus, these stresses could serve as targets for in silico design of heart failure treatments.


Define normal human left ventricular myofiber mechanical properties and stress as a target for computational optimization of cardiac procedures.

License: Data

Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 ± 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4% ± 6.3% and 0.5% ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 kPa and 16.54 ± 4.73 kPa, respectively. Thus, these stresses could serve as targets for in silico design of heart failure treatments.

Downloads

Image & Model data for five patients:
- Abaqus: Result from simulation of end-disatolic and end-systolic states.
- DICOM: Raw images.
- FindTags: Tag lines segmentation for strain computation.
- MeVisLab: LV segmentation for meshing.
- TrueGrid: Meshing.
- TTT: Strain computation.

See all Downloads

Related Projects

The project owner recommends the following other projects:

Infarcted human left ventricular myofiber stress

Feedback